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CALCULATION OF POTENTIAL FLOW ABOUT AXIALLY SYMMETRIC FUSELAGES,
ANNULAR PROFILES AND ENGINE INLETS

W. Geilsdler

Aerodynamische Versuchsanstalt Goéttingen der Deutschen
Forschungs- und Versuchsanstalt flir Luft- und Raumfahrt (DFVLR).

1. Introduction

A numerical method of calculation is given by A.M.O. Smith
and J. Pierce [1] for determining potential flow about axially
symmetric bodies which makes use of a surface distribution of
source-sink rings. While the case of oncoming flow parallel to
the axls 1s covered in [1], J. L. Hess [2] treats bodles of
revolution in transverse flow. A pure source-sink distribution is
not adequate for the special case of an annular profile. It
was shown in [3] that an additional circulation i1s necessary in
order to satisfy Kutta's floweff condition at the trailing edge
of the annular profile. Thilis clrculation is likewlse applied to
the profile surface in [3] as a ring-vortex distribution of

constant vorticity.

An expanded theory is presented 1In the following article
whileh covers the case of an annular profile or body of revolution
in a more general form of oncoming flow (parallel flow which 1is
parallel or obligue to the axis; interference effects). To solve
this problem, Smith and Pierce's method of surface distribution
(panel method) is combined with a formulation by ¥. W Riegels [4]
and J. Weissinger [6] for the variation in flow parameters in
the tangential direction.

¥ Numbers in the margin indicate pagination in the foreign text.




The general method for annular profiles, with suitable
simplifications, is also made applicable to power plant inlets and

axially symmetrical fuselages.

2. Notation

2.1. Geometric Quantities

X, *, ¢ Cylindrical coordinates (position of plotted point)
x', r', ¢ Position of surface covered
Ry Reference radius
ry Inaide radius
r'H Hub radilus
L Reference length
‘Diameter
o Angle of attack (angle between axis of body of

revolution and oncoming-flow direction)

2.2. Aerodynamic Quantities /U458

Vv Oncoming-flow velocity

v Induced velocity of system of singularitiles
Y Vortex density

q Source dersity

P Static pressure

P Pressure in undisturbed flow

4. Stagnation pressure [= (p/2)VZ]

Pressure coefficient [= (p - Pw)/Qw)

TiR 1%

- I’”II
4 Flow index {m_E_Jrvfw)m}
h

2.3. Subseripts

© Oncoming flow

X Axial



Radial

Tangential directlon

Vortex distribution

Source distribution

Normal to section contour

Point plotted

Position of surface covered

Hub

Inside radius of annular contour

fn I T I S = S

[
=y’

3. Problem; System of Singularities

The recalculation problem, the so-called second principle prob-
lem of the profile theory, will be solved for bodies of revolution.
The geometry of the body and the form of oncoming flow are
assumed to be known. Since interference effects must be taken
into consideration, in addition to parallel oncoming flows, the
disturbing body must also be represented by singularities.

Fig. 1 shows the system of singularities employed, exemplified
by an annulus sectlon with a hub body. The cases of a fuse-
lage and a power plant inlet with varying flow through it can be
derived from this by suitable simplification of the vortex

system.

In Fig. 1, the surface of the annulus section and of the
hub body are covered with a continuous ring-source dlstribution.
A ring-vortex distribution (bound vortices) which is constant in
the axial direction lies on the surface of the annular profile,
so that Kutta's flowoff condition (smooth flowoff) is satisfied
at the trailing edge of the section. If the Infensity of these
bound vortices changes in the tangentlal direction ¢ of the
profile, then, according te Helmholtz's third theorem of vortices,
free vortices must leave which follow the'linés of flow. These

free vortices are assumed to travel along the profile contour in



meridianal sectilcons and are

br P & Einzetheit A laid on a semi-inflinite
St S I~ vortex cylinder parallel with
i & \\ T¥7TM_T::;G__ the axis behind the profile.
Rg bOueHen\\ ' \Feie Wirbef/ "~
‘! IA A T l . "4, Formulae, Numerical
[n] . o -
<% Y *’”””!1 ~ Solution
Lr2 geburr)idene Wirbet L
é C‘//jfl G-
) Fﬂ4%ﬂ“’/r' Calculation 1s centered
T
e BlickFichtung: around the kinematic flow

van vorn

£V sina condition: The normal com-

Fig. 1. Annulus section with hub, ponents Induced at the

system of singularities. positlion of the body of

Key: a. Detaill A4; b. Sources; revolution by the external
¢. Free vortices; d. Bound

vortices; e. Viewed from up-
stream penszated for by a normal

oncoming flow must be com-

component of the system of
singularities of equal magnitude and opposite direction:

v Ni (at plotted point i) (1)

In equation (1), the normal velocity of the entire vortex

system v has been placed on the right side of the equation

Y Ni

along with the normal oncoming-flow component'VNi. Vortex strength

¥, wWhich is centained in v is first arbitrarily set equal to

y Ni?
1, for example. Vortex strength is not calculated until later,

with the aid of Kutta's flowoff condition. The normal components
of the two terms on the right side of (1) must be compensated for

by suitable source distributions q{x,¢).

Velocity components vq and vY are calculated with the ald of
the Biot-Savart law. Equation (1) thus yields a two-dimensional
(x~ and ¢-dependent) Integral equation for determining the un-

known source distribution g which 1s contained in vq N This
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two-dimensional integral equation can, according to F. W. Riegels
[4] and J. Weissinger [6], be transformed into a sum of one-
dimensional (x-dependent, only) integral equations by means of
Fourler series for VN and for source strength g and vortex strength
Y. With

%]

Vi (x, @)=V }: ey lx)cosng, (2}
weElh

q (I', {p’) ==V 22 Ben (:c'l o5 1 r;f' . (3 )
noo

y (&, @)=V j‘: o (x" cosug ()

7 =74

(1) is transformed to

"

W Z:HmeW Sar i) Noifl
e (5)

Za Vgt ayd) s Ve oo

(i=1,2,...,m}.

Equation (5) applies to each oncoming-flow case n.
represents the source strength sought for the

In (5), LI

compensation of VNi; compensates for the resultant normal

g
component of the vortnggystem (VYN). The particular advantage in
using expressions (2) through (4) 1s that the dependence upon
tangential angle ¢ is eliminated in equation (5). A single-
dimensional (x-dependent, only) system of equations thus remains in

which n = 0,1,2,... each represent a specifilc oncoming-flow case.

In the form of (5), we already have the kinematic flow condi-
tion as a linear system of equations with two terms on the right.
In the panel method deseribed by J. L. Hess [2], the surface of the
body of revolution 1s divided into conic frustums of amall axial
extension, distributed as uniformly as possibly. The kinematle flow



condition is satisfied at the center of the surface of each such
conle frustum. In (5), Ngijj; Indicates the effect of frustum J,

covered with source rings, at plotted point i. The sum of normal
components of all m-intervals yields the resultant normal compo-

nent at point i.

Solution of the system of linear equations (5) now ylelds

amplification factors &q.j, & for each case of oncoming flow n.

ayJ
The assoclated tangential velocities at the surface of the body
can thereby be calculated. The sum of tangential velocities from
all cases of oncoming flow finally yields resultant velocity for

calculating the pressure distribution.

The "influence function" Nq and the resultant normal velocity
of the overall vortex system VYN are determined in a complex
manner by the geometry of the body of revolution. These functions
will not be descrlbed in detail here.

The dependence of the functions upon tangential direction ¢
can always be reduced to integrals of the form

af2

Cos 21 4 6
Ge (k) = (— 1) | ——=27F g, (6)
« )= (=) {1 — k? sin? )32 dy
0
where
ary ,
k2= @ — =2y

(= 2P F GER

These functions have been presented and tabulated by F. W. Riegels
[4, 5]. The subscript n in (6) is identical to the subscript n

in Fourier series (2) through (4). These G functions are con-
structed recursifely from the complete elliptic integrals of the
first and second types and are particularly well suited to numeri-
cal calculation.



5. Examples of Applications

5.1. Axially Symmetrical Fuselages

The method initially described for annular profiles can be
likewise applied to closed axlally symmetrical fuselages, with
simplification. The assumption is made, however, that the fuselage
possesses no 1lift. A pure source-sink distribution on the surface
of the body 1s then sufficient, and the kinematic flow condltion
(1) is simplified to

(7)

Thus systems of linear equations are produced with only one term
on the right side in each case, and each result is just a solution
vector -
qo
In the case that the freestream is parallel to the axis has
already been studied in detall 1n [3] for various fuselage-type

bodies.

Fig. 2 shows calculated pressure distributions for different
meridianal sections (¢ = 0°, 60°, 180°) of a body of revolution,
in oblique oncoming flow, which converges to a point 1n front and
becomes a cylindrical shaft downstream. In the case of obligue
oncoming flow, only the first two terms (n = 0 and 1) are required
in series (2) through (4).

The calculations have been compared with measurements made in
the transonic wind tunnel at AVA GBttingen by E. Wedemeyer. In
the upstream regilon of the body, the discrepancy between theory and
measurement 1s slight and is caused by the Mach number effect.

Only in the x/L = 1 region do the deviations become larger at
¢ = 180°., Paint patterns indicate that a local separation "bubble"

ogeccurs in this area.



12 e - V2. P'o'w‘e'r' Plant Inlets
: Ky
qak: Ed ua:D ZE;FE*;?J _ Power plant inlets are
Y RN, NS ﬁyf. S ' some other configurations to
| which the method described can
0 xﬁﬁf‘U_QE;:i;TV;' 4f be applied. The upstream
-04 o= e ;“W'WL j portion of an annular profile
jﬁﬁﬂﬁﬁ;m, | e é is involved here whose con-
-08 | —

R VAN .y ekl ) R tours extend downstream in

. ‘ cylindrical form. The system
Fig. 2. Fuselage in oblique

freestream. of singularities outlined in
Key: a. Measured data; Fig. 1 1s used, but without

b. Calculated data; incom- free vortices. For simplifica-
Rressible.

tion, only a constant vortex
strength is assumed here in the tangential direction on this body
of revolution (n = 0 in series (4)). Vortex strength is deter-
mined with the aid of mass throughflow.

The dimensionless throughflow index is defined as

ll\

ji TJrUJ | (8)
h

where vx(r) is resultant axial velocity in the internal cross
section, composed of the effect of the system of singularities and
an external freestream component. Using the panel method makes it
possible to write formula (8) as a formula of sums and to solve

it with respect to circulation strength y, and thus to calculate
the associated y for a given mass throughflow.

A power plant inlet with a hub body is outlined in Fig. 3 on
which measurements were performed at the AVA Gdttingen during the
1940s by D. Kichemann and J. Weber [7]. The comparative experi-
mental results have been taken from that report.

8



Fig, 3 a shows

A Messung: {2

o bNﬂbv{ o gjg :}warlmdung c pressure distribution on
10—y R EJM&& — the internal contour and
q%ﬁ,leivf:anﬁm g%‘%5L§[e°”“” hub. Pressure distribu-
ng ‘ J%\as L{f*s tions on the external
) \ e contour of the inlet are
ey i [m Ot B s shown in Fig. 3 b.
i "L“Tﬁﬂgﬁ@ﬁf ot Fig. 3 ¢ contalns measured
-ﬁsﬁtwmali}m_L__ veloelty distributions
i @aiéh 3E£JL 5 over the internal cross
-Tﬁaféﬁ s o ' - section of the eylindrical

i portion. The parameter in
Fig. 3. Cowl 1 with hub, o = 0°,
with boundary layer correction. each case 1s throughflow

Key: a. Measured data; b. Hub; index ¢ as defined in (8),

¢. Cowl; d. Inside; e. Outside; assumed to have equal
f. Without/with boundary ilayer R
correction ! measured and theoretical

values.

The results of calculations without friction are first plotted
in Fig. 3 as dashed curves. Pronounced deviations from the
measured values are observed, particularly in the rear inlet sec-
tion. Better agreement can be obtained with the following boundary
layer correction: the results from the potential theory calcula-
tion serve as input for a boundary layer program [8]. The dis-
placement thickness of the boundary layer is determined from the
boundary layer calculation and 1s added to the body contour. A
second potential theory calculation is carried out for the same
throughflow coefficient ¢ for the body contour which has been
medified in this manner. The results of this calculation are shown
as solld curves in Fig. 3 a: They are distinctly closer to the

measured values.

In the measurements, however, an additional acceleration of the
internal flow 1s caused by a separation bubble which occurs down-

stream from the pronounced pressure minimum on the internal

™~
=
h
L]



contour and which results in an additional displacement. We find
this separation blister tobea region of reduced vélocity in the
mneasured veloclty distribution in Fig. 3 'c¢. The effect of the
boundary layer upon pressure distribution on the external contour
(Fig. 3 b) is only very slight.

Fig. 4 shows the same inlet contour in an obllque freestream
(o = 10°). Here, excellent agreement with the measured data is
found on the outside. Separation is clearly evident on the inside
at the pressure minimum (at ¢ = 0°). Thus agreement is not so
good in the rear inlet section, due to boundary layer effects. No
boundary layer correction was undertaken here.

5.3. Stationary Inlets

106—
el o Einlautb . .
[ | (s8]
251 i M%ﬂmg{ommec, The stationary inlet
' ﬂi 5788 T P p=0" represents an extreme case
lp=0° xit,
0 ' g5 _"10 in which a clean flow to the
05 10 15 20 25 T
’ ’ xlgy ot compressor of a power plant
-Gs =107
i ;g}l ¢ & € must still be guaranteed.
o infien + Nabe | ~g0° auflen
10 Nabe l Y No external oncoming flow

exiats here. Calculation is

simplified so that the
kinematic flow conditicn (2)

contains only one term on

the right:
Fig. 4. Cowl 1 with hub in obllque
oncoming flow, r = 0.28. _

v . =V
Key: a. Measured data; b. Inlet;

g Ni Yy N1 (9)
¢, Hub; 4. Inside; e. QOutside

Only the normal components
of the constant circulation distribution must be compensated for

by a suitable source distribution.

10
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Verkleidung 1 l

| b U, =224 mls bei x/ra = I gerachnet ’
1

. The inlet contour

7 ——— ——
\ a T I [ 7 .
Theorie . .

- o= o ove 1s studied
ip[r— | /M%amg}4_umm | described above 1 i
Io S ;&:gﬁ e l for the stationary case

e : T

e 4 13 20 xirg 25 and compared with measured

data in Fig. 5. Values in

1l I — I i
”W the cylindrical inlet
d :?zzz£Z£§§Zzgg" portion serve as reference
: AT
-2l fabe §§§§%§§§Ei quantities. The reference
e T 2 AN ~ -
\S<§§§§S§‘ N velocity determined from
.
LT potential theory (22.4 m/sec)
- . — proves to be too small, due
Fig. 5. Cowl 1 with hub, stationary.
to acceleration caused by
Key: a. Theory / measured data;
b. Uy = 22.4 m/s calculated at the boundary layer. The

x/rg = 3; c. Cowl; d. Hub. pressure minimum (dashed
curve) is too highly pro-
nounced. If we use the reference velocity determined by
measurement (24 m/sec), we obtain good agreement between measure-
ment and theory.

5.4. Annular Profiles of Finite Length

Pressure distributions about three axially symmetric annular
profiles with central bodies have already been calculated in
[3] and compared with measurements made in the Royal Aircraft
Establishment in England [9].
will be studied 1n the followlng.

The case of oblique oncoming flow

The entire system of singularities shown In Fig. 1 is required
for this problem, including the system of free vortices.
the first two terms n =0 and 1 are to be used in seriles (2) through/461

Again,

(4) for an oblique freestream.
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Fig. 6 contains calculated pressure distributions and those
measured in the RAE! on an annular profile with a central body
at a 5° angle of attack. Agreement between measurement and theory
is quite satisfactory in all sections studled. Relatively large
deviations are observed in the downstream inside portion of the
annular profile. Again, this may possibly involve an accelera-
tion of flow by the effect of the boundary layer at the internal
contour and hub body (see Section 5.2).

6. Bodies of Revolution in
" the Flelds of Disturbing
N I Bodies (Interference
= Ma =03 Problem)

Ffﬂ‘inﬁhff x 2 Until now, bodies of
v =180"

revclution have only been

studied in parallel flows,.
For these cases, the term
=g°
i n = 0 {(parallel to axis) or
QJ the terms n = 0 and 1 (ob-
90 aulenb
PRS- o° | Messung RAEC lique to axis) were suffi-
. o 1gg°J innen ¢l

cient in serles (2). If the
Fig. 6. Annular profile in oblique - effect of a disturbing body
freestream (cowl 3), o = 5°. in the vicinity of the body
o leasured data RAB; d. Inside of revolution 1s to be taken

into consideraticn, we need

additional terms 1in the
Fourier series, and thereby obtaln a correspondingly higher number
of systems of linear equations (5). The condition is that the

disturbing body can also be represented by a system of singularities.

Interference calculations can be carried out iteratively: The
calculations are first made for the body of revolution and the

! These experimental results have generously been made available
to me by Messrs. J. A. Bagley and C Young‘

12



disturbing body, separately, in the assoclated parallel flow
{zeroth approximation). The effect of the;sqﬁrce vortex strengths,
as determined from the zeroth approximation, upon the nelghboring
body is then determined, and again source vortex strengths to
compensate for these effects are calculated here (first approxima-
tion). Thils can be followed by a second and third approximation.
Experience shows that it 1g possible to stop at just the second
approximation with sufficient accuracy.

6.1. Annular Profile Near the Ground

An annular profile (without central body) close to the ground
was studied at two different heights above the latter as an im-
portant example of such an interference calculation (Fig. 7). The
effect of the ground can be simulated 1n accordance with the ‘
reflection principle by a second annular profile at twice the
distance of the ground. In this case, the disturbing body is thus
again an annular profile. For this problem it is sufficient to
consider the first six cases of oncoming flow, n =0, 1, ..., b.

This method can be used to

1 .
5 E @ ’%’%ﬁ% [Efii] treat a whole series of
RS P B St T additional interference problems,
¢ as 0 X ar A a few of which might be men-
bfﬁ:::::jtﬁ~;j£é? Ji:@m;L tioned here: Interference
_; hrJ] Ropﬂ)ﬁ;{ &*,P%; between an annular profile and a
i e F%Eééf:mm Iiifij fuselage; two annular profiles
g \\‘ B DRty R in a bypass arrangement (with and
o— 05 Lo’;iﬁg;”‘dé: without oblique flow); inter-
K“\ ’”I:/’/ E;;gl‘ ferences between an annular
-1 D el —===a profile and a symmetrical wing.

Fig. 7. Annular section (cowl
2) with ground.

Key: a. Qutside; b. Without
ground; ¢. Inside

13



7. _ Summary

A method ofslngularitles has been glven for calculating
potential flow about bodies of revolution. The bodies of revolu-
tion here can be in a general form of oncoming flow, i.e. besides
parallel flows (parallel to the axls or oblique to the axis), 1t
is also possible to take interference effects caused by dis-
turbing bodies into consideration. For the three-dimensional
normal component distribution which occurs on the body of revolu-
tion, as in the case of the source-sink and vortex distributions,
a Fourier series is set up for the compensation of these normal
components. The use of this series makes it possible to transform
the kinematic flow condition, which 1nitially appears as a
two-dimensional (x- and ¢-dependent) integral equation, into a
sum of one-dimensional {(x-dependent, only) integral equations,
which can be solved separately with the aid of linear eguations,

via a panel method.

It has been shown that the method can be applled both to
closed fuselage contours (without 1ift, however)} and to power
plant inlets with and without oncomiling flow and annular profiles
of finite length. The computed potential flow results agree well
wlith the measured data.

14
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